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What is Nek5000?

= Spectral element CDF Solver for
— Unsteady incompressible Navier-Stokes
— Low mach number flows
— Heat transfer and species transport
— Incompressible magnetohydrodynamics

= Code:

— Open source
— Written in Fortran 77 and C

— MPI for parallelization

= Features:
— Highly scalable, scales to over a million processes
— High order spatial discretization using spectral elements
— High order semi-implicit time stepping



What is Nekbone?

Nekbone is a benchmark derived from Nek5000

— Developed by Katherine Heisey, Paul Fischer, and Scott Parker

Solves 3D Poisson problem in rectangular geometry
— Spectral Element method with Conjugate Gradient linear solver
— Large percentage of the work in Nek5000

— Represents key kernels and operation mix from Nek5000:
e matrix-matrix multiplication
* inner products
* nearest neighbor communication
e MPI_Allreduce

= Implemented using:
— Fortran 77, C, MPI, and OpenMP

= Used for
— Exascale co-design activities: DOE FastForward, DesignForward
— DOE machine acquisitions: CORAL systems

= Available at

— https://cesar.mcs.anl.gov/content/software/thermal hydraulics
— https://asc.linl.gov/CORAL-benchmarks/




Why Nekbone?

= System designers need representative applications to study
— HPC has unique characteristics

= In comparison to Nek5000 Nekbone is:
— More easily configurable
e Number of spectral elements per rank
e Polynomial order of element
— Quicker to run
e Run time is adjustable over a wide range
e Typical run time is a few seconds
— Allows multiple cases in one run
e Arange of elements can be specified
e Arange of polynomial orders can be specified
— More easily instrumented
— More easily modified

e Has ~8K lines of code vs 60k lines of code for Nek5000
e Re-implemented using other programming models: OpenMP, OpenACC, CUDA



Nekbone in a nutshell

cg() [loop 1->numCGlterations]
* solveM() [z(i) =r(i)]
* glsc3() [inner product]
* AllReduce()
* add2s1() [a(i) =c*a(i)+b(i)]
* ax()
* ax_e()
* local_grad3() [gradient]
* (3x) mxm()
* wr-ws-wt [wx(i) = f(g,ur,us,ut)]
* local_grad3_t() [gradient]
* (3x) mxm()
* (2x) add2()
* gs op() [ptp communication]
e add2s2() [a(i) =a(i) + c*b(i)]
* glsc3() [inner product]
* AllReduce
* add2s2() [a(i) =a(i) + c*b(i)]
* add2s2() [a(i) = a(i) + c*b(i)]
e glsc3() [inner product]
* AllIReduce

Bandwidth Bound

Network Bound

gs_op()

gs_gather() [while, out[j] = out[j] + in[i]]

pw_exec()
pw_exec_recvs() [MPI_Irecv]
gs_scatter() [while, outfj] = in[i]]
pw_exec_sends() [MPI_Isend]
comm_wait() [MPI_Waitall]
gs_gather() [while, out[j] = out[j] + in[i]]

gs_scatter() [while, out[j] = in[i]]




Nekbone Compute Performance Model

Routine Routine Routine Routine Data Code Loads | Stores FPOps
solveM copy z,r z(i)=r(i) N N 0
glsc3 r,c,z t=t+r(i)*c(i)*z(i) 3N 0 3N
gop mpi_allreduce
add2s1 p,z p(i)=C*p(i)*z(i) 2N N 2N
axi
ax_e
local_grad3
mxm p,ur,dxm1 N 0 2NN
mxm p,us,dxtm1 0 2NN
mxm p,ut,dxtmi 0 0 2NN
wrwswt g,ur,us,ut ur(i)=g(1,i)*ur(i)+g(2,i)*us(i)+g(3,i)*ut(i) | 6N 0 15N
us(i)=g(2,i)*ur(i)+g(4,i)*us(i)+g(5,i)*ut(i)
ut(i)=g(3,i)*ur(i)+g(5,i)*us(i)+g(6,i) *ut(i)
local_grad3_t
mxm w,ur,dxtm1 0 0 2N, *N
mxm t*,us,dxm1 0 0 2N, *N
add2 w,t w(i)=w(i)+t(i) 0 0 N
mxm t*,ut,dxm1 0 0 2N, *N
add2 w,t* w(i)=w(i)+t(i) 0 N N
gs_op
add2s2 w,p w(i)=w(i)+c*p(i) 2N N 2N
mask
glsc3 w,C,p t=t+w(i)*c(i)*p(i) 3N 0 3N
gop mpi_allreduce
add2s2 X,p x(i)=x(i)+C*p(i) 2N 2N
add2s2 rLw r(i)=r(i)+C*w(i) 2N 2N
glsc3 r,c,r t=t4+r(i)*c(i)*r(i) 2N 3N




Nekbone Compute Performance Model

Bytes Loaded/ FP Operations/
Routine Av Time [% Time |it Bytes Stored/it [it GB/s Gflop/s |Est time Err Ratio
Solver Time| 1.38E+01
rzero 2.16E-03 0.02% 0 67,108,864 0l 31.04 0.00 0.0024 1.11
copy 5.67E-03 0.04% 67,108,864 67,108,864 0 23.65 0.00 0.0048 0.84
glsc3a 6.02E-03 0.04%| 134,217,728 0 25,165,824 22.29 4.18 0.0048 0.80
gopa 2.81E-05 0.00% 0 0 0 0.00 0.00
solveM 4.59E-01 3.33% 67,108,864 67,108,864 0 29.27 0.00 0.4793 1.05
glsc3b 8.80E-01 6.40%| 201,326,592 0 25,165,824 22.87 2.86 0.7190 0.82
gopb 2.48E-03  0.02% 0 0 o 0.0 0.00 Model Time 7.51
add2s1 6.78E-01|  4.93%| 134,217,728|  67,108,864|  16,777,216] 29.69 2.47 0.7190,  1.06 | Actual Time 12.55
localgrad3 | 2.89E+00 20.98%| 67,108,864 0 805,306,368 232  27.89 0.3932[  0.14] | Error Ratio 0.60
wWrwswt 9.31E-01 6.77%| 402,653,184 0 125,829,120, 43.23 13.51 1.4380 1.54
localgradt | 3.08E+00| 22.37% 0 67,108,864 822,083,584 2.18 26.71 0.4014 0.13
gsop 1.21E+00 8.78% 0 0 0 0.00 0.00
add2s2a 7.31E-01 5.31%| 134,217,728 67,108,864 16,777,216/ 27.53 2.29 0.7190 0.98
glsc3c 8.77E-01 6.37%| 201,326,592 0 25,165,824 22.95 2.87 0.7190 0.82
gopc 2.85E-03 0.02% 0 0 0 0.00 0.00
add2s2b 6.86E-01 4.98%| 134,217,728 67,108,864 16,777,216 29.35 2.45 0.7190 1.05
add2s2c 7.09E-01 5.15%| 134,217,728 67,108,864 16,777,216 28.41 2.37 0.7190 1.01
glsc3d 5.98E-01 4.35%| 134,217,728 0 25,165,824 22.44 4.21 0.4793 0.80
gopd 2.43E-03 0.02% 0 0 0 0.00 0.00




Nekbone Communication

=  Point to Point Communication

— 26 send/receives per rank
e 8 vertex values sent/received (8 Bytes per message, for 512x16 case)
e 12 edges sent/received (128 Bytes per message, for 512x16 case)
e 6 faces sent/received (16,384 Bytes per message, for 512x16 case)

= Collective Communication

— Calls MPI_Allreduce 3 times per CG iteration

— 8 Byte (1 double) reduction per call

— 24 bytes per iteration




Nekbone Scaling on Mira

Grid Points per thread: ~10k
FLOP Rate: 9% of peak
Parallel Efficiency: 99%

Ranks | Threads | TFlops

512 64 9.5

1024 64 18.9

2048 64 36.9
4096 64 73.9
8192 64 150.5
16384 64 291.1
32768 64 606.9
49152 64 900.8
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Typical Ratios on Representative BG/Q Runs

FLOPS/(Bytes Loaded & Stored) 0.94

Loaded Bytes/ Stored Bytes 4

FLOPS/AlIReduce 158,000,000

FLOPS/Pt2Pt Byte 4,744

FLOPS/MPI-Message 9,111,545
Memory Bound 45%
Compute Bound 35%
Point to Point Comm. 18%

Collective Comm. 2%
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Adding OpenMP to Nekbone

= Adding OpenMP:
— Relatively straightforward: 90% trivial, 10% required detailed understanding
— Basic approach: partition element across threads
e Easy:
— Add a single OMP parallel region at top of cg() routine
— Modify routines (add2s2, glsc3, axi, etc) to take a range of elements as an arg
— Modify routines to use locally declared work arrays (ax_e)

e A bit more complex:
— Restructure gather/scatter maps for parallel execution

— Add synchronization and barriers around communication operations (gs_aux, pw_exec)

= |Impact:
— Little impact on compute performance
— Little impact on memory usage

— Some impact on communication performance, most noticeable at large scale
e Eliminates some data copies to/from MPI buffers
e Fewer messages sent

— Provides opportunity to overlap communication and computation
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Nekbone on KNL

= Nekbone is up and running on KNL

Simulations and estimates of performance based on KNL specs
Run on pre-release KNL hardware
Performance as expected based on compute performance model

Tuning use of AVX-512 instructions
e Utilizing LIBXSMM for matrix multiplication
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Next Steps

KNL Optimization

Programming Models
- CUDA
* OpenMP 4
* OpenACC
* RAIJA, Kokkos

Overlap computation and communication
*  Communication kernel can be rewritten to send messages as soon as they are ready
* Element updates can be re-ordered to update process boundary elements first
* Process interior elements can updated simultaneous with communication operations
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